chore: automatic commit 2025-04-30 12:48

This commit is contained in:
2025-04-30 12:48:06 +02:00
parent f69356473b
commit e4ab1e1bb5
5284 changed files with 868438 additions and 0 deletions

View File

@@ -0,0 +1 @@
from ._cli import main as main

View File

@@ -0,0 +1 @@
from ._main import register_commands as register_commands

View File

@@ -0,0 +1,16 @@
from __future__ import annotations
from argparse import ArgumentParser
from . import chat, audio, files, image, models, completions
def register_commands(parser: ArgumentParser) -> None:
subparsers = parser.add_subparsers(help="All API subcommands")
chat.register(subparsers)
image.register(subparsers)
audio.register(subparsers)
files.register(subparsers)
models.register(subparsers)
completions.register(subparsers)

View File

@@ -0,0 +1,108 @@
from __future__ import annotations
import sys
from typing import TYPE_CHECKING, Any, Optional, cast
from argparse import ArgumentParser
from .._utils import get_client, print_model
from ..._types import NOT_GIVEN
from .._models import BaseModel
from .._progress import BufferReader
from ...types.audio import Transcription
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
# transcriptions
sub = subparser.add_parser("audio.transcriptions.create")
# Required
sub.add_argument("-m", "--model", type=str, default="whisper-1")
sub.add_argument("-f", "--file", type=str, required=True)
# Optional
sub.add_argument("--response-format", type=str)
sub.add_argument("--language", type=str)
sub.add_argument("-t", "--temperature", type=float)
sub.add_argument("--prompt", type=str)
sub.set_defaults(func=CLIAudio.transcribe, args_model=CLITranscribeArgs)
# translations
sub = subparser.add_parser("audio.translations.create")
# Required
sub.add_argument("-f", "--file", type=str, required=True)
# Optional
sub.add_argument("-m", "--model", type=str, default="whisper-1")
sub.add_argument("--response-format", type=str)
# TODO: doesn't seem to be supported by the API
# sub.add_argument("--language", type=str)
sub.add_argument("-t", "--temperature", type=float)
sub.add_argument("--prompt", type=str)
sub.set_defaults(func=CLIAudio.translate, args_model=CLITranslationArgs)
class CLITranscribeArgs(BaseModel):
model: str
file: str
response_format: Optional[str] = None
language: Optional[str] = None
temperature: Optional[float] = None
prompt: Optional[str] = None
class CLITranslationArgs(BaseModel):
model: str
file: str
response_format: Optional[str] = None
language: Optional[str] = None
temperature: Optional[float] = None
prompt: Optional[str] = None
class CLIAudio:
@staticmethod
def transcribe(args: CLITranscribeArgs) -> None:
with open(args.file, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Upload progress")
model = cast(
"Transcription | str",
get_client().audio.transcriptions.create(
file=(args.file, buffer_reader),
model=args.model,
language=args.language or NOT_GIVEN,
temperature=args.temperature or NOT_GIVEN,
prompt=args.prompt or NOT_GIVEN,
# casts required because the API is typed for enums
# but we don't want to validate that here for forwards-compat
response_format=cast(Any, args.response_format),
),
)
if isinstance(model, str):
sys.stdout.write(model + "\n")
else:
print_model(model)
@staticmethod
def translate(args: CLITranslationArgs) -> None:
with open(args.file, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Upload progress")
model = cast(
"Transcription | str",
get_client().audio.translations.create(
file=(args.file, buffer_reader),
model=args.model,
temperature=args.temperature or NOT_GIVEN,
prompt=args.prompt or NOT_GIVEN,
# casts required because the API is typed for enums
# but we don't want to validate that here for forwards-compat
response_format=cast(Any, args.response_format),
),
)
if isinstance(model, str):
sys.stdout.write(model + "\n")
else:
print_model(model)

View File

@@ -0,0 +1,13 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from argparse import ArgumentParser
from . import completions
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
completions.register(subparser)

View File

@@ -0,0 +1,160 @@
from __future__ import annotations
import sys
from typing import TYPE_CHECKING, List, Optional, cast
from argparse import ArgumentParser
from typing_extensions import Literal, NamedTuple
from ..._utils import get_client
from ..._models import BaseModel
from ...._streaming import Stream
from ....types.chat import (
ChatCompletionRole,
ChatCompletionChunk,
CompletionCreateParams,
)
from ....types.chat.completion_create_params import (
CompletionCreateParamsStreaming,
CompletionCreateParamsNonStreaming,
)
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
sub = subparser.add_parser("chat.completions.create")
sub._action_groups.pop()
req = sub.add_argument_group("required arguments")
opt = sub.add_argument_group("optional arguments")
req.add_argument(
"-g",
"--message",
action="append",
nargs=2,
metavar=("ROLE", "CONTENT"),
help="A message in `{role} {content}` format. Use this argument multiple times to add multiple messages.",
required=True,
)
req.add_argument(
"-m",
"--model",
help="The model to use.",
required=True,
)
opt.add_argument(
"-n",
"--n",
help="How many completions to generate for the conversation.",
type=int,
)
opt.add_argument("-M", "--max-tokens", help="The maximum number of tokens to generate.", type=int)
opt.add_argument(
"-t",
"--temperature",
help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
Mutually exclusive with `top_p`.""",
type=float,
)
opt.add_argument(
"-P",
"--top_p",
help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered.
Mutually exclusive with `temperature`.""",
type=float,
)
opt.add_argument(
"--stop",
help="A stop sequence at which to stop generating tokens for the message.",
)
opt.add_argument("--stream", help="Stream messages as they're ready.", action="store_true")
sub.set_defaults(func=CLIChatCompletion.create, args_model=CLIChatCompletionCreateArgs)
class CLIMessage(NamedTuple):
role: ChatCompletionRole
content: str
class CLIChatCompletionCreateArgs(BaseModel):
message: List[CLIMessage]
model: str
n: Optional[int] = None
max_tokens: Optional[int] = None
temperature: Optional[float] = None
top_p: Optional[float] = None
stop: Optional[str] = None
stream: bool = False
class CLIChatCompletion:
@staticmethod
def create(args: CLIChatCompletionCreateArgs) -> None:
params: CompletionCreateParams = {
"model": args.model,
"messages": [
{"role": cast(Literal["user"], message.role), "content": message.content} for message in args.message
],
# type checkers are not good at inferring union types so we have to set stream afterwards
"stream": False,
}
if args.temperature is not None:
params["temperature"] = args.temperature
if args.stop is not None:
params["stop"] = args.stop
if args.top_p is not None:
params["top_p"] = args.top_p
if args.n is not None:
params["n"] = args.n
if args.stream:
params["stream"] = args.stream # type: ignore
if args.max_tokens is not None:
params["max_tokens"] = args.max_tokens
if args.stream:
return CLIChatCompletion._stream_create(cast(CompletionCreateParamsStreaming, params))
return CLIChatCompletion._create(cast(CompletionCreateParamsNonStreaming, params))
@staticmethod
def _create(params: CompletionCreateParamsNonStreaming) -> None:
completion = get_client().chat.completions.create(**params)
should_print_header = len(completion.choices) > 1
for choice in completion.choices:
if should_print_header:
sys.stdout.write("===== Chat Completion {} =====\n".format(choice.index))
content = choice.message.content if choice.message.content is not None else "None"
sys.stdout.write(content)
if should_print_header or not content.endswith("\n"):
sys.stdout.write("\n")
sys.stdout.flush()
@staticmethod
def _stream_create(params: CompletionCreateParamsStreaming) -> None:
# cast is required for mypy
stream = cast( # pyright: ignore[reportUnnecessaryCast]
Stream[ChatCompletionChunk], get_client().chat.completions.create(**params)
)
for chunk in stream:
should_print_header = len(chunk.choices) > 1
for choice in chunk.choices:
if should_print_header:
sys.stdout.write("===== Chat Completion {} =====\n".format(choice.index))
content = choice.delta.content or ""
sys.stdout.write(content)
if should_print_header:
sys.stdout.write("\n")
sys.stdout.flush()
sys.stdout.write("\n")

View File

@@ -0,0 +1,173 @@
from __future__ import annotations
import sys
from typing import TYPE_CHECKING, Optional, cast
from argparse import ArgumentParser
from functools import partial
from openai.types.completion import Completion
from .._utils import get_client
from ..._types import NOT_GIVEN, NotGivenOr
from ..._utils import is_given
from .._errors import CLIError
from .._models import BaseModel
from ..._streaming import Stream
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
sub = subparser.add_parser("completions.create")
# Required
sub.add_argument(
"-m",
"--model",
help="The model to use",
required=True,
)
# Optional
sub.add_argument("-p", "--prompt", help="An optional prompt to complete from")
sub.add_argument("--stream", help="Stream tokens as they're ready.", action="store_true")
sub.add_argument("-M", "--max-tokens", help="The maximum number of tokens to generate", type=int)
sub.add_argument(
"-t",
"--temperature",
help="""What sampling temperature to use. Higher values means the model will take more risks. Try 0.9 for more creative applications, and 0 (argmax sampling) for ones with a well-defined answer.
Mutually exclusive with `top_p`.""",
type=float,
)
sub.add_argument(
"-P",
"--top_p",
help="""An alternative to sampling with temperature, called nucleus sampling, where the considers the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%% probability mass are considered.
Mutually exclusive with `temperature`.""",
type=float,
)
sub.add_argument(
"-n",
"--n",
help="How many sub-completions to generate for each prompt.",
type=int,
)
sub.add_argument(
"--logprobs",
help="Include the log probabilities on the `logprobs` most likely tokens, as well the chosen tokens. So for example, if `logprobs` is 10, the API will return a list of the 10 most likely tokens. If `logprobs` is 0, only the chosen tokens will have logprobs returned.",
type=int,
)
sub.add_argument(
"--best_of",
help="Generates `best_of` completions server-side and returns the 'best' (the one with the highest log probability per token). Results cannot be streamed.",
type=int,
)
sub.add_argument(
"--echo",
help="Echo back the prompt in addition to the completion",
action="store_true",
)
sub.add_argument(
"--frequency_penalty",
help="Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.",
type=float,
)
sub.add_argument(
"--presence_penalty",
help="Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.",
type=float,
)
sub.add_argument("--suffix", help="The suffix that comes after a completion of inserted text.")
sub.add_argument("--stop", help="A stop sequence at which to stop generating tokens.")
sub.add_argument(
"--user",
help="A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.",
)
# TODO: add support for logit_bias
sub.set_defaults(func=CLICompletions.create, args_model=CLICompletionCreateArgs)
class CLICompletionCreateArgs(BaseModel):
model: str
stream: bool = False
prompt: Optional[str] = None
n: NotGivenOr[int] = NOT_GIVEN
stop: NotGivenOr[str] = NOT_GIVEN
user: NotGivenOr[str] = NOT_GIVEN
echo: NotGivenOr[bool] = NOT_GIVEN
suffix: NotGivenOr[str] = NOT_GIVEN
best_of: NotGivenOr[int] = NOT_GIVEN
top_p: NotGivenOr[float] = NOT_GIVEN
logprobs: NotGivenOr[int] = NOT_GIVEN
max_tokens: NotGivenOr[int] = NOT_GIVEN
temperature: NotGivenOr[float] = NOT_GIVEN
presence_penalty: NotGivenOr[float] = NOT_GIVEN
frequency_penalty: NotGivenOr[float] = NOT_GIVEN
class CLICompletions:
@staticmethod
def create(args: CLICompletionCreateArgs) -> None:
if is_given(args.n) and args.n > 1 and args.stream:
raise CLIError("Can't stream completions with n>1 with the current CLI")
make_request = partial(
get_client().completions.create,
n=args.n,
echo=args.echo,
stop=args.stop,
user=args.user,
model=args.model,
top_p=args.top_p,
prompt=args.prompt,
suffix=args.suffix,
best_of=args.best_of,
logprobs=args.logprobs,
max_tokens=args.max_tokens,
temperature=args.temperature,
presence_penalty=args.presence_penalty,
frequency_penalty=args.frequency_penalty,
)
if args.stream:
return CLICompletions._stream_create(
# mypy doesn't understand the `partial` function but pyright does
cast(Stream[Completion], make_request(stream=True)) # pyright: ignore[reportUnnecessaryCast]
)
return CLICompletions._create(make_request())
@staticmethod
def _create(completion: Completion) -> None:
should_print_header = len(completion.choices) > 1
for choice in completion.choices:
if should_print_header:
sys.stdout.write("===== Completion {} =====\n".format(choice.index))
sys.stdout.write(choice.text)
if should_print_header or not choice.text.endswith("\n"):
sys.stdout.write("\n")
sys.stdout.flush()
@staticmethod
def _stream_create(stream: Stream[Completion]) -> None:
for completion in stream:
should_print_header = len(completion.choices) > 1
for choice in sorted(completion.choices, key=lambda c: c.index):
if should_print_header:
sys.stdout.write("===== Chat Completion {} =====\n".format(choice.index))
sys.stdout.write(choice.text)
if should_print_header:
sys.stdout.write("\n")
sys.stdout.flush()
sys.stdout.write("\n")

View File

@@ -0,0 +1,80 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any, cast
from argparse import ArgumentParser
from .._utils import get_client, print_model
from .._models import BaseModel
from .._progress import BufferReader
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
sub = subparser.add_parser("files.create")
sub.add_argument(
"-f",
"--file",
required=True,
help="File to upload",
)
sub.add_argument(
"-p",
"--purpose",
help="Why are you uploading this file? (see https://platform.openai.com/docs/api-reference/ for purposes)",
required=True,
)
sub.set_defaults(func=CLIFile.create, args_model=CLIFileCreateArgs)
sub = subparser.add_parser("files.retrieve")
sub.add_argument("-i", "--id", required=True, help="The files ID")
sub.set_defaults(func=CLIFile.get, args_model=CLIFileCreateArgs)
sub = subparser.add_parser("files.delete")
sub.add_argument("-i", "--id", required=True, help="The files ID")
sub.set_defaults(func=CLIFile.delete, args_model=CLIFileCreateArgs)
sub = subparser.add_parser("files.list")
sub.set_defaults(func=CLIFile.list)
class CLIFileIDArgs(BaseModel):
id: str
class CLIFileCreateArgs(BaseModel):
file: str
purpose: str
class CLIFile:
@staticmethod
def create(args: CLIFileCreateArgs) -> None:
with open(args.file, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Upload progress")
file = get_client().files.create(
file=(args.file, buffer_reader),
# casts required because the API is typed for enums
# but we don't want to validate that here for forwards-compat
purpose=cast(Any, args.purpose),
)
print_model(file)
@staticmethod
def get(args: CLIFileIDArgs) -> None:
file = get_client().files.retrieve(file_id=args.id)
print_model(file)
@staticmethod
def delete(args: CLIFileIDArgs) -> None:
file = get_client().files.delete(file_id=args.id)
print_model(file)
@staticmethod
def list() -> None:
files = get_client().files.list()
for file in files:
print_model(file)

View File

@@ -0,0 +1,139 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Any, cast
from argparse import ArgumentParser
from .._utils import get_client, print_model
from ..._types import NOT_GIVEN, NotGiven, NotGivenOr
from .._models import BaseModel
from .._progress import BufferReader
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
sub = subparser.add_parser("images.generate")
sub.add_argument("-m", "--model", type=str)
sub.add_argument("-p", "--prompt", type=str, required=True)
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument("-s", "--size", type=str, default="1024x1024", help="Size of the output image")
sub.add_argument("--response-format", type=str, default="url")
sub.set_defaults(func=CLIImage.create, args_model=CLIImageCreateArgs)
sub = subparser.add_parser("images.edit")
sub.add_argument("-m", "--model", type=str)
sub.add_argument("-p", "--prompt", type=str, required=True)
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument(
"-I",
"--image",
type=str,
required=True,
help="Image to modify. Should be a local path and a PNG encoded image.",
)
sub.add_argument("-s", "--size", type=str, default="1024x1024", help="Size of the output image")
sub.add_argument("--response-format", type=str, default="url")
sub.add_argument(
"-M",
"--mask",
type=str,
required=False,
help="Path to a mask image. It should be the same size as the image you're editing and a RGBA PNG image. The Alpha channel acts as the mask.",
)
sub.set_defaults(func=CLIImage.edit, args_model=CLIImageEditArgs)
sub = subparser.add_parser("images.create_variation")
sub.add_argument("-m", "--model", type=str)
sub.add_argument("-n", "--num-images", type=int, default=1)
sub.add_argument(
"-I",
"--image",
type=str,
required=True,
help="Image to modify. Should be a local path and a PNG encoded image.",
)
sub.add_argument("-s", "--size", type=str, default="1024x1024", help="Size of the output image")
sub.add_argument("--response-format", type=str, default="url")
sub.set_defaults(func=CLIImage.create_variation, args_model=CLIImageCreateVariationArgs)
class CLIImageCreateArgs(BaseModel):
prompt: str
num_images: int
size: str
response_format: str
model: NotGivenOr[str] = NOT_GIVEN
class CLIImageCreateVariationArgs(BaseModel):
image: str
num_images: int
size: str
response_format: str
model: NotGivenOr[str] = NOT_GIVEN
class CLIImageEditArgs(BaseModel):
image: str
num_images: int
size: str
response_format: str
prompt: str
mask: NotGivenOr[str] = NOT_GIVEN
model: NotGivenOr[str] = NOT_GIVEN
class CLIImage:
@staticmethod
def create(args: CLIImageCreateArgs) -> None:
image = get_client().images.generate(
model=args.model,
prompt=args.prompt,
n=args.num_images,
# casts required because the API is typed for enums
# but we don't want to validate that here for forwards-compat
size=cast(Any, args.size),
response_format=cast(Any, args.response_format),
)
print_model(image)
@staticmethod
def create_variation(args: CLIImageCreateVariationArgs) -> None:
with open(args.image, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Upload progress")
image = get_client().images.create_variation(
model=args.model,
image=("image", buffer_reader),
n=args.num_images,
# casts required because the API is typed for enums
# but we don't want to validate that here for forwards-compat
size=cast(Any, args.size),
response_format=cast(Any, args.response_format),
)
print_model(image)
@staticmethod
def edit(args: CLIImageEditArgs) -> None:
with open(args.image, "rb") as file_reader:
buffer_reader = BufferReader(file_reader.read(), desc="Image upload progress")
if isinstance(args.mask, NotGiven):
mask: NotGivenOr[BufferReader] = NOT_GIVEN
else:
with open(args.mask, "rb") as file_reader:
mask = BufferReader(file_reader.read(), desc="Mask progress")
image = get_client().images.edit(
model=args.model,
prompt=args.prompt,
image=("image", buffer_reader),
n=args.num_images,
mask=("mask", mask) if not isinstance(mask, NotGiven) else mask,
# casts required because the API is typed for enums
# but we don't want to validate that here for forwards-compat
size=cast(Any, args.size),
response_format=cast(Any, args.response_format),
)
print_model(image)

View File

@@ -0,0 +1,45 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from argparse import ArgumentParser
from .._utils import get_client, print_model
from .._models import BaseModel
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
sub = subparser.add_parser("models.list")
sub.set_defaults(func=CLIModels.list)
sub = subparser.add_parser("models.retrieve")
sub.add_argument("-i", "--id", required=True, help="The model ID")
sub.set_defaults(func=CLIModels.get, args_model=CLIModelIDArgs)
sub = subparser.add_parser("models.delete")
sub.add_argument("-i", "--id", required=True, help="The model ID")
sub.set_defaults(func=CLIModels.delete, args_model=CLIModelIDArgs)
class CLIModelIDArgs(BaseModel):
id: str
class CLIModels:
@staticmethod
def get(args: CLIModelIDArgs) -> None:
model = get_client().models.retrieve(model=args.id)
print_model(model)
@staticmethod
def delete(args: CLIModelIDArgs) -> None:
model = get_client().models.delete(model=args.id)
print_model(model)
@staticmethod
def list() -> None:
models = get_client().models.list()
for model in models:
print_model(model)

View File

@@ -0,0 +1,233 @@
from __future__ import annotations
import sys
import logging
import argparse
from typing import Any, List, Type, Optional
from typing_extensions import ClassVar
import httpx
import pydantic
import openai
from . import _tools
from .. import _ApiType, __version__
from ._api import register_commands
from ._utils import can_use_http2
from ._errors import CLIError, display_error
from .._compat import PYDANTIC_V2, ConfigDict, model_parse
from .._models import BaseModel
from .._exceptions import APIError
logger = logging.getLogger()
formatter = logging.Formatter("[%(asctime)s] %(message)s")
handler = logging.StreamHandler(sys.stderr)
handler.setFormatter(formatter)
logger.addHandler(handler)
class Arguments(BaseModel):
if PYDANTIC_V2:
model_config: ClassVar[ConfigDict] = ConfigDict(
extra="ignore",
)
else:
class Config(pydantic.BaseConfig): # type: ignore
extra: Any = pydantic.Extra.ignore # type: ignore
verbosity: int
version: Optional[str] = None
api_key: Optional[str]
api_base: Optional[str]
organization: Optional[str]
proxy: Optional[List[str]]
api_type: Optional[_ApiType] = None
api_version: Optional[str] = None
# azure
azure_endpoint: Optional[str] = None
azure_ad_token: Optional[str] = None
# internal, set by subparsers to parse their specific args
args_model: Optional[Type[BaseModel]] = None
# internal, used so that subparsers can forward unknown arguments
unknown_args: List[str] = []
allow_unknown_args: bool = False
def _build_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser(description=None, prog="openai")
parser.add_argument(
"-v",
"--verbose",
action="count",
dest="verbosity",
default=0,
help="Set verbosity.",
)
parser.add_argument("-b", "--api-base", help="What API base url to use.")
parser.add_argument("-k", "--api-key", help="What API key to use.")
parser.add_argument("-p", "--proxy", nargs="+", help="What proxy to use.")
parser.add_argument(
"-o",
"--organization",
help="Which organization to run as (will use your default organization if not specified)",
)
parser.add_argument(
"-t",
"--api-type",
type=str,
choices=("openai", "azure"),
help="The backend API to call, must be `openai` or `azure`",
)
parser.add_argument(
"--api-version",
help="The Azure API version, e.g. 'https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#rest-api-versioning'",
)
# azure
parser.add_argument(
"--azure-endpoint",
help="The Azure endpoint, e.g. 'https://endpoint.openai.azure.com'",
)
parser.add_argument(
"--azure-ad-token",
help="A token from Azure Active Directory, https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id",
)
# prints the package version
parser.add_argument(
"-V",
"--version",
action="version",
version="%(prog)s " + __version__,
)
def help() -> None:
parser.print_help()
parser.set_defaults(func=help)
subparsers = parser.add_subparsers()
sub_api = subparsers.add_parser("api", help="Direct API calls")
register_commands(sub_api)
sub_tools = subparsers.add_parser("tools", help="Client side tools for convenience")
_tools.register_commands(sub_tools, subparsers)
return parser
def main() -> int:
try:
_main()
except (APIError, CLIError, pydantic.ValidationError) as err:
display_error(err)
return 1
except KeyboardInterrupt:
sys.stderr.write("\n")
return 1
return 0
def _parse_args(parser: argparse.ArgumentParser) -> tuple[argparse.Namespace, Arguments, list[str]]:
# argparse by default will strip out the `--` but we want to keep it for unknown arguments
if "--" in sys.argv:
idx = sys.argv.index("--")
known_args = sys.argv[1:idx]
unknown_args = sys.argv[idx:]
else:
known_args = sys.argv[1:]
unknown_args = []
parsed, remaining_unknown = parser.parse_known_args(known_args)
# append any remaining unknown arguments from the initial parsing
remaining_unknown.extend(unknown_args)
args = model_parse(Arguments, vars(parsed))
if not args.allow_unknown_args:
# we have to parse twice to ensure any unknown arguments
# result in an error if that behaviour is desired
parser.parse_args()
return parsed, args, remaining_unknown
def _main() -> None:
parser = _build_parser()
parsed, args, unknown = _parse_args(parser)
if args.verbosity != 0:
sys.stderr.write("Warning: --verbosity isn't supported yet\n")
proxies: dict[str, httpx.BaseTransport] = {}
if args.proxy is not None:
for proxy in args.proxy:
key = "https://" if proxy.startswith("https") else "http://"
if key in proxies:
raise CLIError(f"Multiple {key} proxies given - only the last one would be used")
proxies[key] = httpx.HTTPTransport(proxy=httpx.Proxy(httpx.URL(proxy)))
http_client = httpx.Client(
mounts=proxies or None,
http2=can_use_http2(),
)
openai.http_client = http_client
if args.organization:
openai.organization = args.organization
if args.api_key:
openai.api_key = args.api_key
if args.api_base:
openai.base_url = args.api_base
# azure
if args.api_type is not None:
openai.api_type = args.api_type
if args.azure_endpoint is not None:
openai.azure_endpoint = args.azure_endpoint
if args.api_version is not None:
openai.api_version = args.api_version
if args.azure_ad_token is not None:
openai.azure_ad_token = args.azure_ad_token
try:
if args.args_model:
parsed.func(
model_parse(
args.args_model,
{
**{
# we omit None values so that they can be defaulted to `NotGiven`
# and we'll strip it from the API request
key: value
for key, value in vars(parsed).items()
if value is not None
},
"unknown_args": unknown,
},
)
)
else:
parsed.func()
finally:
try:
http_client.close()
except Exception:
pass
if __name__ == "__main__":
sys.exit(main())

View File

@@ -0,0 +1,21 @@
from __future__ import annotations
import sys
import pydantic
from ._utils import Colors, organization_info
from .._exceptions import APIError, OpenAIError
class CLIError(OpenAIError): ...
class SilentCLIError(CLIError): ...
def display_error(err: CLIError | APIError | pydantic.ValidationError) -> None:
if isinstance(err, SilentCLIError):
return
sys.stderr.write("{}{}Error:{} {}\n".format(organization_info(), Colors.FAIL, Colors.ENDC, err))

View File

@@ -0,0 +1,17 @@
from typing import Any
from typing_extensions import ClassVar
import pydantic
from .. import _models
from .._compat import PYDANTIC_V2, ConfigDict
class BaseModel(_models.BaseModel):
if PYDANTIC_V2:
model_config: ClassVar[ConfigDict] = ConfigDict(extra="ignore", arbitrary_types_allowed=True)
else:
class Config(pydantic.BaseConfig): # type: ignore
extra: Any = pydantic.Extra.ignore # type: ignore
arbitrary_types_allowed: bool = True

View File

@@ -0,0 +1,59 @@
from __future__ import annotations
import io
from typing import Callable
from typing_extensions import override
class CancelledError(Exception):
def __init__(self, msg: str) -> None:
self.msg = msg
super().__init__(msg)
@override
def __str__(self) -> str:
return self.msg
__repr__ = __str__
class BufferReader(io.BytesIO):
def __init__(self, buf: bytes = b"", desc: str | None = None) -> None:
super().__init__(buf)
self._len = len(buf)
self._progress = 0
self._callback = progress(len(buf), desc=desc)
def __len__(self) -> int:
return self._len
@override
def read(self, n: int | None = -1) -> bytes:
chunk = io.BytesIO.read(self, n)
self._progress += len(chunk)
try:
self._callback(self._progress)
except Exception as e: # catches exception from the callback
raise CancelledError("The upload was cancelled: {}".format(e)) from e
return chunk
def progress(total: float, desc: str | None) -> Callable[[float], None]:
import tqdm
meter = tqdm.tqdm(total=total, unit_scale=True, desc=desc)
def incr(progress: float) -> None:
meter.n = progress
if progress == total:
meter.close()
else:
meter.refresh()
return incr
def MB(i: int) -> int:
return int(i // 1024**2)

View File

@@ -0,0 +1 @@
from ._main import register_commands as register_commands

View File

@@ -0,0 +1,17 @@
from __future__ import annotations
from typing import TYPE_CHECKING
from argparse import ArgumentParser
from . import migrate, fine_tunes
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register_commands(parser: ArgumentParser, subparser: _SubParsersAction[ArgumentParser]) -> None:
migrate.register(subparser)
namespaced = parser.add_subparsers(title="Tools", help="Convenience client side tools")
fine_tunes.register(namespaced)

View File

@@ -0,0 +1,63 @@
from __future__ import annotations
import sys
from typing import TYPE_CHECKING
from argparse import ArgumentParser
from .._models import BaseModel
from ...lib._validators import (
get_validators,
write_out_file,
read_any_format,
apply_validators,
apply_necessary_remediation,
)
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
sub = subparser.add_parser("fine_tunes.prepare_data")
sub.add_argument(
"-f",
"--file",
required=True,
help="JSONL, JSON, CSV, TSV, TXT or XLSX file containing prompt-completion examples to be analyzed."
"This should be the local file path.",
)
sub.add_argument(
"-q",
"--quiet",
required=False,
action="store_true",
help="Auto accepts all suggestions, without asking for user input. To be used within scripts.",
)
sub.set_defaults(func=prepare_data, args_model=PrepareDataArgs)
class PrepareDataArgs(BaseModel):
file: str
quiet: bool
def prepare_data(args: PrepareDataArgs) -> None:
sys.stdout.write("Analyzing...\n")
fname = args.file
auto_accept = args.quiet
df, remediation = read_any_format(fname)
apply_necessary_remediation(None, remediation)
validators = get_validators()
assert df is not None
apply_validators(
df,
fname,
remediation,
validators,
auto_accept,
write_out_file_func=write_out_file,
)

View File

@@ -0,0 +1,164 @@
from __future__ import annotations
import os
import sys
import shutil
import tarfile
import platform
import subprocess
from typing import TYPE_CHECKING, List
from pathlib import Path
from argparse import ArgumentParser
import httpx
from .._errors import CLIError, SilentCLIError
from .._models import BaseModel
if TYPE_CHECKING:
from argparse import _SubParsersAction
def register(subparser: _SubParsersAction[ArgumentParser]) -> None:
sub = subparser.add_parser("migrate")
sub.set_defaults(func=migrate, args_model=MigrateArgs, allow_unknown_args=True)
sub = subparser.add_parser("grit")
sub.set_defaults(func=grit, args_model=GritArgs, allow_unknown_args=True)
class GritArgs(BaseModel):
# internal
unknown_args: List[str] = []
def grit(args: GritArgs) -> None:
grit_path = install()
try:
subprocess.check_call([grit_path, *args.unknown_args])
except subprocess.CalledProcessError:
# stdout and stderr are forwarded by subprocess so an error will already
# have been displayed
raise SilentCLIError() from None
class MigrateArgs(BaseModel):
# internal
unknown_args: List[str] = []
def migrate(args: MigrateArgs) -> None:
grit_path = install()
try:
subprocess.check_call([grit_path, "apply", "openai", *args.unknown_args])
except subprocess.CalledProcessError:
# stdout and stderr are forwarded by subprocess so an error will already
# have been displayed
raise SilentCLIError() from None
# handles downloading the Grit CLI until they provide their own PyPi package
KEYGEN_ACCOUNT = "custodian-dev"
def _cache_dir() -> Path:
xdg = os.environ.get("XDG_CACHE_HOME")
if xdg is not None:
return Path(xdg)
return Path.home() / ".cache"
def _debug(message: str) -> None:
if not os.environ.get("DEBUG"):
return
sys.stdout.write(f"[DEBUG]: {message}\n")
def install() -> Path:
"""Installs the Grit CLI and returns the location of the binary"""
if sys.platform == "win32":
raise CLIError("Windows is not supported yet in the migration CLI")
_debug("Using Grit installer from GitHub")
platform = "apple-darwin" if sys.platform == "darwin" else "unknown-linux-gnu"
dir_name = _cache_dir() / "openai-python"
install_dir = dir_name / ".install"
target_dir = install_dir / "bin"
target_path = target_dir / "grit"
temp_file = target_dir / "grit.tmp"
if target_path.exists():
_debug(f"{target_path} already exists")
sys.stdout.flush()
return target_path
_debug(f"Using Grit CLI path: {target_path}")
target_dir.mkdir(parents=True, exist_ok=True)
if temp_file.exists():
temp_file.unlink()
arch = _get_arch()
_debug(f"Using architecture {arch}")
file_name = f"grit-{arch}-{platform}"
download_url = f"https://github.com/getgrit/gritql/releases/latest/download/{file_name}.tar.gz"
sys.stdout.write(f"Downloading Grit CLI from {download_url}\n")
with httpx.Client() as client:
download_response = client.get(download_url, follow_redirects=True)
if download_response.status_code != 200:
raise CLIError(f"Failed to download Grit CLI from {download_url}")
with open(temp_file, "wb") as file:
for chunk in download_response.iter_bytes():
file.write(chunk)
unpacked_dir = target_dir / "cli-bin"
unpacked_dir.mkdir(parents=True, exist_ok=True)
with tarfile.open(temp_file, "r:gz") as archive:
if sys.version_info >= (3, 12):
archive.extractall(unpacked_dir, filter="data")
else:
archive.extractall(unpacked_dir)
_move_files_recursively(unpacked_dir, target_dir)
shutil.rmtree(unpacked_dir)
os.remove(temp_file)
os.chmod(target_path, 0o755)
sys.stdout.flush()
return target_path
def _move_files_recursively(source_dir: Path, target_dir: Path) -> None:
for item in source_dir.iterdir():
if item.is_file():
item.rename(target_dir / item.name)
elif item.is_dir():
_move_files_recursively(item, target_dir)
def _get_arch() -> str:
architecture = platform.machine().lower()
# Map the architecture names to Grit equivalents
arch_map = {
"x86_64": "x86_64",
"amd64": "x86_64",
"armv7l": "aarch64",
"arm64": "aarch64",
}
return arch_map.get(architecture, architecture)

View File

@@ -0,0 +1,45 @@
from __future__ import annotations
import sys
import openai
from .. import OpenAI, _load_client
from .._compat import model_json
from .._models import BaseModel
class Colors:
HEADER = "\033[95m"
OKBLUE = "\033[94m"
OKGREEN = "\033[92m"
WARNING = "\033[93m"
FAIL = "\033[91m"
ENDC = "\033[0m"
BOLD = "\033[1m"
UNDERLINE = "\033[4m"
def get_client() -> OpenAI:
return _load_client()
def organization_info() -> str:
organization = openai.organization
if organization is not None:
return "[organization={}] ".format(organization)
return ""
def print_model(model: BaseModel) -> None:
sys.stdout.write(model_json(model, indent=2) + "\n")
def can_use_http2() -> bool:
try:
import h2 # type: ignore # noqa
except ImportError:
return False
return True