chore: automatic commit 2025-04-30 12:48
This commit is contained in:
290
venv/lib/python3.11/site-packages/openai/resources/embeddings.py
Normal file
290
venv/lib/python3.11/site-packages/openai/resources/embeddings.py
Normal file
@@ -0,0 +1,290 @@
|
||||
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import array
|
||||
import base64
|
||||
from typing import List, Union, Iterable, cast
|
||||
from typing_extensions import Literal
|
||||
|
||||
import httpx
|
||||
|
||||
from .. import _legacy_response
|
||||
from ..types import embedding_create_params
|
||||
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
|
||||
from .._utils import is_given, maybe_transform
|
||||
from .._compat import cached_property
|
||||
from .._extras import numpy as np, has_numpy
|
||||
from .._resource import SyncAPIResource, AsyncAPIResource
|
||||
from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
|
||||
from .._base_client import make_request_options
|
||||
from ..types.embedding_model import EmbeddingModel
|
||||
from ..types.create_embedding_response import CreateEmbeddingResponse
|
||||
|
||||
__all__ = ["Embeddings", "AsyncEmbeddings"]
|
||||
|
||||
|
||||
class Embeddings(SyncAPIResource):
|
||||
@cached_property
|
||||
def with_raw_response(self) -> EmbeddingsWithRawResponse:
|
||||
"""
|
||||
This property can be used as a prefix for any HTTP method call to return
|
||||
the raw response object instead of the parsed content.
|
||||
|
||||
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
|
||||
"""
|
||||
return EmbeddingsWithRawResponse(self)
|
||||
|
||||
@cached_property
|
||||
def with_streaming_response(self) -> EmbeddingsWithStreamingResponse:
|
||||
"""
|
||||
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
|
||||
|
||||
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
|
||||
"""
|
||||
return EmbeddingsWithStreamingResponse(self)
|
||||
|
||||
def create(
|
||||
self,
|
||||
*,
|
||||
input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]],
|
||||
model: Union[str, EmbeddingModel],
|
||||
dimensions: int | NotGiven = NOT_GIVEN,
|
||||
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
|
||||
user: str | NotGiven = NOT_GIVEN,
|
||||
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||||
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||||
extra_headers: Headers | None = None,
|
||||
extra_query: Query | None = None,
|
||||
extra_body: Body | None = None,
|
||||
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||||
) -> CreateEmbeddingResponse:
|
||||
"""
|
||||
Creates an embedding vector representing the input text.
|
||||
|
||||
Args:
|
||||
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
|
||||
inputs in a single request, pass an array of strings or array of token arrays.
|
||||
The input must not exceed the max input tokens for the model (8192 tokens for
|
||||
`text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
|
||||
dimensions or less.
|
||||
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
|
||||
for counting tokens. Some models may also impose a limit on total number of
|
||||
tokens summed across inputs.
|
||||
|
||||
model: ID of the model to use. You can use the
|
||||
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
|
||||
see all of your available models, or see our
|
||||
[Model overview](https://platform.openai.com/docs/models) for descriptions of
|
||||
them.
|
||||
|
||||
dimensions: The number of dimensions the resulting output embeddings should have. Only
|
||||
supported in `text-embedding-3` and later models.
|
||||
|
||||
encoding_format: The format to return the embeddings in. Can be either `float` or
|
||||
[`base64`](https://pypi.org/project/pybase64/).
|
||||
|
||||
user: A unique identifier representing your end-user, which can help OpenAI to monitor
|
||||
and detect abuse.
|
||||
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).
|
||||
|
||||
extra_headers: Send extra headers
|
||||
|
||||
extra_query: Add additional query parameters to the request
|
||||
|
||||
extra_body: Add additional JSON properties to the request
|
||||
|
||||
timeout: Override the client-level default timeout for this request, in seconds
|
||||
"""
|
||||
params = {
|
||||
"input": input,
|
||||
"model": model,
|
||||
"user": user,
|
||||
"dimensions": dimensions,
|
||||
"encoding_format": encoding_format,
|
||||
}
|
||||
if not is_given(encoding_format):
|
||||
params["encoding_format"] = "base64"
|
||||
|
||||
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
|
||||
if is_given(encoding_format):
|
||||
# don't modify the response object if a user explicitly asked for a format
|
||||
return obj
|
||||
|
||||
for embedding in obj.data:
|
||||
data = cast(object, embedding.embedding)
|
||||
if not isinstance(data, str):
|
||||
continue
|
||||
if not has_numpy():
|
||||
# use array for base64 optimisation
|
||||
embedding.embedding = array.array("f", base64.b64decode(data)).tolist()
|
||||
else:
|
||||
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
|
||||
base64.b64decode(data), dtype="float32"
|
||||
).tolist()
|
||||
|
||||
return obj
|
||||
|
||||
return self._post(
|
||||
"/embeddings",
|
||||
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
|
||||
options=make_request_options(
|
||||
extra_headers=extra_headers,
|
||||
extra_query=extra_query,
|
||||
extra_body=extra_body,
|
||||
timeout=timeout,
|
||||
post_parser=parser,
|
||||
),
|
||||
cast_to=CreateEmbeddingResponse,
|
||||
)
|
||||
|
||||
|
||||
class AsyncEmbeddings(AsyncAPIResource):
|
||||
@cached_property
|
||||
def with_raw_response(self) -> AsyncEmbeddingsWithRawResponse:
|
||||
"""
|
||||
This property can be used as a prefix for any HTTP method call to return
|
||||
the raw response object instead of the parsed content.
|
||||
|
||||
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
|
||||
"""
|
||||
return AsyncEmbeddingsWithRawResponse(self)
|
||||
|
||||
@cached_property
|
||||
def with_streaming_response(self) -> AsyncEmbeddingsWithStreamingResponse:
|
||||
"""
|
||||
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
|
||||
|
||||
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
|
||||
"""
|
||||
return AsyncEmbeddingsWithStreamingResponse(self)
|
||||
|
||||
async def create(
|
||||
self,
|
||||
*,
|
||||
input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]],
|
||||
model: Union[str, EmbeddingModel],
|
||||
dimensions: int | NotGiven = NOT_GIVEN,
|
||||
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
|
||||
user: str | NotGiven = NOT_GIVEN,
|
||||
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
|
||||
# The extra values given here take precedence over values defined on the client or passed to this method.
|
||||
extra_headers: Headers | None = None,
|
||||
extra_query: Query | None = None,
|
||||
extra_body: Body | None = None,
|
||||
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
|
||||
) -> CreateEmbeddingResponse:
|
||||
"""
|
||||
Creates an embedding vector representing the input text.
|
||||
|
||||
Args:
|
||||
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
|
||||
inputs in a single request, pass an array of strings or array of token arrays.
|
||||
The input must not exceed the max input tokens for the model (8192 tokens for
|
||||
`text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
|
||||
dimensions or less.
|
||||
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
|
||||
for counting tokens. Some models may also impose a limit on total number of
|
||||
tokens summed across inputs.
|
||||
|
||||
model: ID of the model to use. You can use the
|
||||
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
|
||||
see all of your available models, or see our
|
||||
[Model overview](https://platform.openai.com/docs/models) for descriptions of
|
||||
them.
|
||||
|
||||
dimensions: The number of dimensions the resulting output embeddings should have. Only
|
||||
supported in `text-embedding-3` and later models.
|
||||
|
||||
encoding_format: The format to return the embeddings in. Can be either `float` or
|
||||
[`base64`](https://pypi.org/project/pybase64/).
|
||||
|
||||
user: A unique identifier representing your end-user, which can help OpenAI to monitor
|
||||
and detect abuse.
|
||||
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices#end-user-ids).
|
||||
|
||||
extra_headers: Send extra headers
|
||||
|
||||
extra_query: Add additional query parameters to the request
|
||||
|
||||
extra_body: Add additional JSON properties to the request
|
||||
|
||||
timeout: Override the client-level default timeout for this request, in seconds
|
||||
"""
|
||||
params = {
|
||||
"input": input,
|
||||
"model": model,
|
||||
"user": user,
|
||||
"dimensions": dimensions,
|
||||
"encoding_format": encoding_format,
|
||||
}
|
||||
if not is_given(encoding_format):
|
||||
params["encoding_format"] = "base64"
|
||||
|
||||
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
|
||||
if is_given(encoding_format):
|
||||
# don't modify the response object if a user explicitly asked for a format
|
||||
return obj
|
||||
|
||||
for embedding in obj.data:
|
||||
data = cast(object, embedding.embedding)
|
||||
if not isinstance(data, str):
|
||||
continue
|
||||
if not has_numpy():
|
||||
# use array for base64 optimisation
|
||||
embedding.embedding = array.array("f", base64.b64decode(data)).tolist()
|
||||
else:
|
||||
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
|
||||
base64.b64decode(data), dtype="float32"
|
||||
).tolist()
|
||||
|
||||
return obj
|
||||
|
||||
return await self._post(
|
||||
"/embeddings",
|
||||
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
|
||||
options=make_request_options(
|
||||
extra_headers=extra_headers,
|
||||
extra_query=extra_query,
|
||||
extra_body=extra_body,
|
||||
timeout=timeout,
|
||||
post_parser=parser,
|
||||
),
|
||||
cast_to=CreateEmbeddingResponse,
|
||||
)
|
||||
|
||||
|
||||
class EmbeddingsWithRawResponse:
|
||||
def __init__(self, embeddings: Embeddings) -> None:
|
||||
self._embeddings = embeddings
|
||||
|
||||
self.create = _legacy_response.to_raw_response_wrapper(
|
||||
embeddings.create,
|
||||
)
|
||||
|
||||
|
||||
class AsyncEmbeddingsWithRawResponse:
|
||||
def __init__(self, embeddings: AsyncEmbeddings) -> None:
|
||||
self._embeddings = embeddings
|
||||
|
||||
self.create = _legacy_response.async_to_raw_response_wrapper(
|
||||
embeddings.create,
|
||||
)
|
||||
|
||||
|
||||
class EmbeddingsWithStreamingResponse:
|
||||
def __init__(self, embeddings: Embeddings) -> None:
|
||||
self._embeddings = embeddings
|
||||
|
||||
self.create = to_streamed_response_wrapper(
|
||||
embeddings.create,
|
||||
)
|
||||
|
||||
|
||||
class AsyncEmbeddingsWithStreamingResponse:
|
||||
def __init__(self, embeddings: AsyncEmbeddings) -> None:
|
||||
self._embeddings = embeddings
|
||||
|
||||
self.create = async_to_streamed_response_wrapper(
|
||||
embeddings.create,
|
||||
)
|
||||
Reference in New Issue
Block a user