feat: enhance mindmap and neural network background functionality

This commit is contained in:
2025-05-10 20:40:13 +01:00
parent ed1d41d316
commit 7cb2bf1ed0
2 changed files with 210 additions and 113 deletions

View File

@@ -547,17 +547,20 @@ function enhanceMindmap() {
cy.layout({
name: 'cose',
animate: true,
animationDuration: 1800,
animationDuration: 2000,
nodeDimensionsIncludeLabels: true,
padding: 100,
spacingFactor: 1.8,
randomize: false,
spacingFactor: 2,
randomize: true,
fit: true,
componentSpacing: 100,
nodeRepulsion: 8000,
edgeElasticity: 100,
nestingFactor: 1.2,
gravity: 80
componentSpacing: 150,
nodeRepulsion: 10000,
edgeElasticity: 150,
nestingFactor: 1.5,
gravity: 100,
initialTemp: 1000,
coolingFactor: 0.95,
minTemp: 1
}).run();
// Neuronen-Namen mit besserer Lesbarkeit umgestalten
@@ -621,33 +624,43 @@ function applyNeuralNetworkStyle(cy) {
cy.style()
.selector('node')
.style({
'label': 'data(name)',
'text-valign': 'bottom',
'label': 'data(label)',
'text-valign': 'center',
'text-halign': 'center',
'color': '#ffffff',
'text-outline-width': 1.5,
'text-outline-color': '#0a0e19',
'text-outline-width': 2,
'text-outline-color': 'rgba(0,0,0,0.8)',
'text-outline-opacity': 0.9,
'font-size': 10,
'text-margin-y': 7,
'width': 'mapData(neuronSize, 3, 10, 15, 40)',
'height': 'mapData(neuronSize, 3, 10, 15, 40)',
'font-size': 14,
'font-weight': '500',
'text-margin-y': 8,
'width': 'mapData(neuronSize, 3, 10, 40, 80)',
'height': 'mapData(neuronSize, 3, 10, 40, 80)',
'background-color': 'data(color)',
'background-opacity': 0.85,
'border-width': 0,
'background-opacity': 0.9,
'border-width': 2,
'border-color': '#ffffff',
'border-opacity': 0.8,
'shape': 'ellipse',
'shadow-blur': 'mapData(neuronActivity, 0.3, 1, 5, 15)',
'shadow-blur': 'mapData(neuronActivity, 0.3, 1, 15, 30)',
'shadow-color': 'data(color)',
'shadow-opacity': 0.6,
'shadow-opacity': 0.8,
'shadow-offset-x': 0,
'shadow-offset-y': 0
'shadow-offset-y': 0,
'transition-property': 'background-color, shadow-blur, shadow-opacity, background-opacity',
'transition-duration': '0.3s',
'transition-timing-function': 'ease-in-out'
})
.selector('edge')
.style({
'width': 'mapData(strength, 0.2, 0.8, 0.7, 2)',
'width': 'mapData(strength, 0.2, 0.8, 1, 3)',
'curve-style': 'bezier',
'line-color': '#8a8aaa',
'line-opacity': 'mapData(strength, 0.2, 0.8, 0.4, 0.7)',
'line-color': function(ele) {
const sourceColor = ele.source().data('color');
const targetColor = ele.target().data('color');
return `linear-gradient(to right, ${sourceColor}, ${targetColor})`;
},
'line-opacity': 'mapData(strength, 0.2, 0.8, 0.4, 0.8)',
'line-style': function(ele) {
const strength = ele.data('strength');
if (strength <= 0.4) return 'dotted';
@@ -656,19 +669,23 @@ function applyNeuralNetworkStyle(cy) {
},
'target-arrow-shape': 'none',
'source-endpoint': '0% 50%',
'target-endpoint': '100% 50%'
'target-endpoint': '100% 50%',
'transition-property': 'line-opacity, width',
'transition-duration': '0.3s',
'transition-timing-function': 'ease-in-out'
})
.selector('node[isRoot]')
.style({
'font-size': 12,
'font-size': 18,
'font-weight': 'bold',
'width': 50,
'height': 50,
'width': 100,
'height': 100,
'background-color': '#6366f1',
'shadow-blur': 20,
'shadow-blur': 30,
'shadow-color': '#6366f1',
'shadow-opacity': 0.8,
'text-margin-y': 8
'shadow-opacity': 0.9,
'text-margin-y': 10,
'border-width': 3
})
.update();
}
@@ -678,91 +695,111 @@ function applyNeuralNetworkStyle(cy) {
* @param {Object} cy - Cytoscape-Instanz
*/
function startNeuralActivitySimulation(cy) {
if (window.neuralInterval) clearInterval(window.neuralInterval);
const nodes = cy.nodes();
const edges = cy.edges();
let currentTime = Date.now();
// Neuronale Aktivität simulieren
function simulateNeuralActivity() {
currentTime = Date.now();
if (window.neuralInterval) clearInterval(window.neuralInterval);
// Zufällige Neuronen "feuern" lassen
nodes.forEach(node => {
const data = node.data();
const lastFired = data.lastFired || 0;
const timeSinceLastFire = currentTime - lastFired;
// Prüfen ob Neuron feuern kann (Refraktionsperiode)
if (timeSinceLastFire > data.refractionPeriod) {
// Zufälliges Feuern basierend auf Aktivität
if (Math.random() < data.neuronActivity * 0.1) {
fireNeuron(node, true, currentTime);
}
}
});
}
// Neuron feuern lassen
function fireNeuron(node, state, currentTime) {
const data = node.data();
data.lastFired = currentTime;
const nodes = cy.nodes();
const edges = cy.edges();
let currentTime = Date.now();
// Visuelles Feedback
node.style({
'background-opacity': 1,
'shadow-blur': 25,
'shadow-opacity': 0.9
});
// Nach kurzer Zeit zurück zum Normalzustand
setTimeout(() => {
node.style({
'background-opacity': 0.85,
'shadow-blur': 18,
'shadow-opacity': 0.6
});
}, 200);
// Signal weiterleiten
if (state) {
propagateSignal(node, currentTime);
}
}
// Signal über Kanten weiterleiten
function propagateSignal(sourceNode, currentTime) {
const outgoingEdges = sourceNode.connectedEdges('out');
outgoingEdges.forEach(edge => {
const targetNode = edge.target();
const edgeData = edge.data();
const latency = edgeData.latency;
// Signal mit Verzögerung weiterleiten
setTimeout(() => {
const targetData = targetNode.data();
const timeSinceLastFire = currentTime - (targetData.lastFired || 0);
function simulateNeuralActivity() {
currentTime = Date.now();
// Prüfen ob Zielneuron feuern kann
if (timeSinceLastFire > targetData.refractionPeriod) {
// Signalstärke berechnen
const signalStrength = edgeData.strength *
edgeData.conductionVelocity *
sourceNode.data('neuronActivity');
// Neuron feuern lassen wenn Signal stark genug
if (signalStrength > targetData.threshold) {
fireNeuron(targetNode, true, currentTime + latency);
}
nodes.forEach(node => {
const data = node.data();
const lastFired = data.lastFired || 0;
const timeSinceLastFire = currentTime - lastFired;
if (timeSinceLastFire > data.refractionPeriod) {
if (Math.random() < data.neuronActivity * 0.15) {
fireNeuron(node, true, currentTime);
}
}
});
}
function fireNeuron(node, state, currentTime) {
const data = node.data();
data.lastFired = currentTime;
// Verbesserte visuelle Effekte
node.animate({
style: {
'background-opacity': 1,
'shadow-blur': 35,
'shadow-opacity': 1,
'border-width': 3,
'border-color': '#ffffff'
},
duration: 200,
easing: 'ease-in-out-cubic'
});
setTimeout(() => {
node.animate({
style: {
'background-opacity': 0.9,
'shadow-blur': 20,
'shadow-opacity': 0.8,
'border-width': 2,
'border-color': 'rgba(255,255,255,0.8)'
},
duration: 300,
easing: 'ease-out-cubic'
});
}, 200);
if (state) {
propagateSignal(node, currentTime);
}
}, latency);
});
}
// Simulation starten
window.neuralInterval = setInterval(simulateNeuralActivity, 100);
}
function propagateSignal(sourceNode, currentTime) {
const outgoingEdges = sourceNode.connectedEdges('out');
outgoingEdges.forEach(edge => {
const targetNode = edge.target();
const edgeData = edge.data();
const latency = edgeData.latency;
// Verbesserte Kanten-Animation
edge.animate({
style: {
'line-opacity': 1,
'width': edgeData.strength * 4
},
duration: 200,
easing: 'ease-in-out-cubic'
});
setTimeout(() => {
edge.animate({
style: {
'line-opacity': edgeData.strength * 0.8,
'width': edgeData.strength * 2
},
duration: 300,
easing: 'ease-out-cubic'
});
}, 200);
setTimeout(() => {
const targetData = targetNode.data();
const timeSinceLastFire = currentTime - (targetData.lastFired || 0);
if (timeSinceLastFire > targetData.refractionPeriod) {
const signalStrength = edgeData.strength *
edgeData.conductionVelocity *
sourceNode.data('neuronActivity');
if (signalStrength > targetData.threshold) {
fireNeuron(targetNode, true, currentTime + latency);
}
}
}, latency);
});
}
window.neuralInterval = setInterval(simulateNeuralActivity, 100);
}
// Hilfe-Funktion zum Hinzufügen eines Flash-Hinweises

View File

@@ -1106,4 +1106,64 @@ window.addEventListener('beforeunload', () => {
if (window.neuralNetworkBackground) {
window.neuralNetworkBackground.destroy();
}
});
});
function applyNeuralNetworkStyle(cy) {
cy.style()
.selector('node')
.style({
'label': 'data(label)',
'text-valign': 'center',
'text-halign': 'center',
'color': '#ffffff',
'text-outline-width': 2,
'text-outline-color': 'rgba(0,0,0,0.8)',
'text-outline-opacity': 0.9,
'font-size': 14,
'font-weight': '500',
'text-margin-y': 8,
'width': function(ele) {
return ele.data('neuronSize') ? ele.data('neuronSize') * 8 : 60;
},
'height': function(ele) {
return ele.data('neuronSize') ? ele.data('neuronSize') * 8 : 60;
},
'background-color': 'data(color)',
'background-opacity': 0.9,
'border-width': 2,
'border-color': '#ffffff',
'border-opacity': 0.8,
'shape': 'ellipse',
'transition-property': 'background-color, background-opacity, border-width',
'transition-duration': '0.3s',
'transition-timing-function': 'ease-in-out'
})
.selector('edge')
.style({
'width': function(ele) {
return ele.data('strength') ? ele.data('strength') * 3 : 1;
},
'curve-style': 'bezier',
'line-color': function(ele) {
const sourceColor = ele.source().data('color');
return sourceColor || '#8a8aaa';
},
'line-opacity': function(ele) {
return ele.data('strength') ? ele.data('strength') * 0.8 : 0.4;
},
'line-style': function(ele) {
const strength = ele.data('strength');
if (!strength) return 'solid';
if (strength <= 0.4) return 'dotted';
if (strength <= 0.6) return 'dashed';
return 'solid';
},
'target-arrow-shape': 'none',
'source-endpoint': '0% 50%',
'target-endpoint': '100% 50%',
'transition-property': 'line-opacity, width',
'transition-duration': '0.3s',
'transition-timing-function': 'ease-in-out'
})
.update();
}