✨ feat: enhance mindmap and neural network background functionality
This commit is contained in:
@@ -547,17 +547,20 @@ function enhanceMindmap() {
|
||||
cy.layout({
|
||||
name: 'cose',
|
||||
animate: true,
|
||||
animationDuration: 1800,
|
||||
animationDuration: 2000,
|
||||
nodeDimensionsIncludeLabels: true,
|
||||
padding: 100,
|
||||
spacingFactor: 1.8,
|
||||
randomize: false,
|
||||
spacingFactor: 2,
|
||||
randomize: true,
|
||||
fit: true,
|
||||
componentSpacing: 100,
|
||||
nodeRepulsion: 8000,
|
||||
edgeElasticity: 100,
|
||||
nestingFactor: 1.2,
|
||||
gravity: 80
|
||||
componentSpacing: 150,
|
||||
nodeRepulsion: 10000,
|
||||
edgeElasticity: 150,
|
||||
nestingFactor: 1.5,
|
||||
gravity: 100,
|
||||
initialTemp: 1000,
|
||||
coolingFactor: 0.95,
|
||||
minTemp: 1
|
||||
}).run();
|
||||
|
||||
// Neuronen-Namen mit besserer Lesbarkeit umgestalten
|
||||
@@ -621,33 +624,43 @@ function applyNeuralNetworkStyle(cy) {
|
||||
cy.style()
|
||||
.selector('node')
|
||||
.style({
|
||||
'label': 'data(name)',
|
||||
'text-valign': 'bottom',
|
||||
'label': 'data(label)',
|
||||
'text-valign': 'center',
|
||||
'text-halign': 'center',
|
||||
'color': '#ffffff',
|
||||
'text-outline-width': 1.5,
|
||||
'text-outline-color': '#0a0e19',
|
||||
'text-outline-width': 2,
|
||||
'text-outline-color': 'rgba(0,0,0,0.8)',
|
||||
'text-outline-opacity': 0.9,
|
||||
'font-size': 10,
|
||||
'text-margin-y': 7,
|
||||
'width': 'mapData(neuronSize, 3, 10, 15, 40)',
|
||||
'height': 'mapData(neuronSize, 3, 10, 15, 40)',
|
||||
'font-size': 14,
|
||||
'font-weight': '500',
|
||||
'text-margin-y': 8,
|
||||
'width': 'mapData(neuronSize, 3, 10, 40, 80)',
|
||||
'height': 'mapData(neuronSize, 3, 10, 40, 80)',
|
||||
'background-color': 'data(color)',
|
||||
'background-opacity': 0.85,
|
||||
'border-width': 0,
|
||||
'background-opacity': 0.9,
|
||||
'border-width': 2,
|
||||
'border-color': '#ffffff',
|
||||
'border-opacity': 0.8,
|
||||
'shape': 'ellipse',
|
||||
'shadow-blur': 'mapData(neuronActivity, 0.3, 1, 5, 15)',
|
||||
'shadow-blur': 'mapData(neuronActivity, 0.3, 1, 15, 30)',
|
||||
'shadow-color': 'data(color)',
|
||||
'shadow-opacity': 0.6,
|
||||
'shadow-opacity': 0.8,
|
||||
'shadow-offset-x': 0,
|
||||
'shadow-offset-y': 0
|
||||
'shadow-offset-y': 0,
|
||||
'transition-property': 'background-color, shadow-blur, shadow-opacity, background-opacity',
|
||||
'transition-duration': '0.3s',
|
||||
'transition-timing-function': 'ease-in-out'
|
||||
})
|
||||
.selector('edge')
|
||||
.style({
|
||||
'width': 'mapData(strength, 0.2, 0.8, 0.7, 2)',
|
||||
'width': 'mapData(strength, 0.2, 0.8, 1, 3)',
|
||||
'curve-style': 'bezier',
|
||||
'line-color': '#8a8aaa',
|
||||
'line-opacity': 'mapData(strength, 0.2, 0.8, 0.4, 0.7)',
|
||||
'line-color': function(ele) {
|
||||
const sourceColor = ele.source().data('color');
|
||||
const targetColor = ele.target().data('color');
|
||||
return `linear-gradient(to right, ${sourceColor}, ${targetColor})`;
|
||||
},
|
||||
'line-opacity': 'mapData(strength, 0.2, 0.8, 0.4, 0.8)',
|
||||
'line-style': function(ele) {
|
||||
const strength = ele.data('strength');
|
||||
if (strength <= 0.4) return 'dotted';
|
||||
@@ -656,19 +669,23 @@ function applyNeuralNetworkStyle(cy) {
|
||||
},
|
||||
'target-arrow-shape': 'none',
|
||||
'source-endpoint': '0% 50%',
|
||||
'target-endpoint': '100% 50%'
|
||||
'target-endpoint': '100% 50%',
|
||||
'transition-property': 'line-opacity, width',
|
||||
'transition-duration': '0.3s',
|
||||
'transition-timing-function': 'ease-in-out'
|
||||
})
|
||||
.selector('node[isRoot]')
|
||||
.style({
|
||||
'font-size': 12,
|
||||
'font-size': 18,
|
||||
'font-weight': 'bold',
|
||||
'width': 50,
|
||||
'height': 50,
|
||||
'width': 100,
|
||||
'height': 100,
|
||||
'background-color': '#6366f1',
|
||||
'shadow-blur': 20,
|
||||
'shadow-blur': 30,
|
||||
'shadow-color': '#6366f1',
|
||||
'shadow-opacity': 0.8,
|
||||
'text-margin-y': 8
|
||||
'shadow-opacity': 0.9,
|
||||
'text-margin-y': 10,
|
||||
'border-width': 3
|
||||
})
|
||||
.update();
|
||||
}
|
||||
@@ -678,91 +695,111 @@ function applyNeuralNetworkStyle(cy) {
|
||||
* @param {Object} cy - Cytoscape-Instanz
|
||||
*/
|
||||
function startNeuralActivitySimulation(cy) {
|
||||
if (window.neuralInterval) clearInterval(window.neuralInterval);
|
||||
|
||||
const nodes = cy.nodes();
|
||||
const edges = cy.edges();
|
||||
let currentTime = Date.now();
|
||||
|
||||
// Neuronale Aktivität simulieren
|
||||
function simulateNeuralActivity() {
|
||||
currentTime = Date.now();
|
||||
if (window.neuralInterval) clearInterval(window.neuralInterval);
|
||||
|
||||
// Zufällige Neuronen "feuern" lassen
|
||||
nodes.forEach(node => {
|
||||
const data = node.data();
|
||||
const lastFired = data.lastFired || 0;
|
||||
const timeSinceLastFire = currentTime - lastFired;
|
||||
|
||||
// Prüfen ob Neuron feuern kann (Refraktionsperiode)
|
||||
if (timeSinceLastFire > data.refractionPeriod) {
|
||||
// Zufälliges Feuern basierend auf Aktivität
|
||||
if (Math.random() < data.neuronActivity * 0.1) {
|
||||
fireNeuron(node, true, currentTime);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// Neuron feuern lassen
|
||||
function fireNeuron(node, state, currentTime) {
|
||||
const data = node.data();
|
||||
data.lastFired = currentTime;
|
||||
const nodes = cy.nodes();
|
||||
const edges = cy.edges();
|
||||
let currentTime = Date.now();
|
||||
|
||||
// Visuelles Feedback
|
||||
node.style({
|
||||
'background-opacity': 1,
|
||||
'shadow-blur': 25,
|
||||
'shadow-opacity': 0.9
|
||||
});
|
||||
|
||||
// Nach kurzer Zeit zurück zum Normalzustand
|
||||
setTimeout(() => {
|
||||
node.style({
|
||||
'background-opacity': 0.85,
|
||||
'shadow-blur': 18,
|
||||
'shadow-opacity': 0.6
|
||||
});
|
||||
}, 200);
|
||||
|
||||
// Signal weiterleiten
|
||||
if (state) {
|
||||
propagateSignal(node, currentTime);
|
||||
}
|
||||
}
|
||||
|
||||
// Signal über Kanten weiterleiten
|
||||
function propagateSignal(sourceNode, currentTime) {
|
||||
const outgoingEdges = sourceNode.connectedEdges('out');
|
||||
|
||||
outgoingEdges.forEach(edge => {
|
||||
const targetNode = edge.target();
|
||||
const edgeData = edge.data();
|
||||
const latency = edgeData.latency;
|
||||
|
||||
// Signal mit Verzögerung weiterleiten
|
||||
setTimeout(() => {
|
||||
const targetData = targetNode.data();
|
||||
const timeSinceLastFire = currentTime - (targetData.lastFired || 0);
|
||||
function simulateNeuralActivity() {
|
||||
currentTime = Date.now();
|
||||
|
||||
// Prüfen ob Zielneuron feuern kann
|
||||
if (timeSinceLastFire > targetData.refractionPeriod) {
|
||||
// Signalstärke berechnen
|
||||
const signalStrength = edgeData.strength *
|
||||
edgeData.conductionVelocity *
|
||||
sourceNode.data('neuronActivity');
|
||||
|
||||
// Neuron feuern lassen wenn Signal stark genug
|
||||
if (signalStrength > targetData.threshold) {
|
||||
fireNeuron(targetNode, true, currentTime + latency);
|
||||
}
|
||||
nodes.forEach(node => {
|
||||
const data = node.data();
|
||||
const lastFired = data.lastFired || 0;
|
||||
const timeSinceLastFire = currentTime - lastFired;
|
||||
|
||||
if (timeSinceLastFire > data.refractionPeriod) {
|
||||
if (Math.random() < data.neuronActivity * 0.15) {
|
||||
fireNeuron(node, true, currentTime);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
function fireNeuron(node, state, currentTime) {
|
||||
const data = node.data();
|
||||
data.lastFired = currentTime;
|
||||
|
||||
// Verbesserte visuelle Effekte
|
||||
node.animate({
|
||||
style: {
|
||||
'background-opacity': 1,
|
||||
'shadow-blur': 35,
|
||||
'shadow-opacity': 1,
|
||||
'border-width': 3,
|
||||
'border-color': '#ffffff'
|
||||
},
|
||||
duration: 200,
|
||||
easing: 'ease-in-out-cubic'
|
||||
});
|
||||
|
||||
setTimeout(() => {
|
||||
node.animate({
|
||||
style: {
|
||||
'background-opacity': 0.9,
|
||||
'shadow-blur': 20,
|
||||
'shadow-opacity': 0.8,
|
||||
'border-width': 2,
|
||||
'border-color': 'rgba(255,255,255,0.8)'
|
||||
},
|
||||
duration: 300,
|
||||
easing: 'ease-out-cubic'
|
||||
});
|
||||
}, 200);
|
||||
|
||||
if (state) {
|
||||
propagateSignal(node, currentTime);
|
||||
}
|
||||
}, latency);
|
||||
});
|
||||
}
|
||||
|
||||
// Simulation starten
|
||||
window.neuralInterval = setInterval(simulateNeuralActivity, 100);
|
||||
}
|
||||
|
||||
function propagateSignal(sourceNode, currentTime) {
|
||||
const outgoingEdges = sourceNode.connectedEdges('out');
|
||||
|
||||
outgoingEdges.forEach(edge => {
|
||||
const targetNode = edge.target();
|
||||
const edgeData = edge.data();
|
||||
const latency = edgeData.latency;
|
||||
|
||||
// Verbesserte Kanten-Animation
|
||||
edge.animate({
|
||||
style: {
|
||||
'line-opacity': 1,
|
||||
'width': edgeData.strength * 4
|
||||
},
|
||||
duration: 200,
|
||||
easing: 'ease-in-out-cubic'
|
||||
});
|
||||
|
||||
setTimeout(() => {
|
||||
edge.animate({
|
||||
style: {
|
||||
'line-opacity': edgeData.strength * 0.8,
|
||||
'width': edgeData.strength * 2
|
||||
},
|
||||
duration: 300,
|
||||
easing: 'ease-out-cubic'
|
||||
});
|
||||
}, 200);
|
||||
|
||||
setTimeout(() => {
|
||||
const targetData = targetNode.data();
|
||||
const timeSinceLastFire = currentTime - (targetData.lastFired || 0);
|
||||
|
||||
if (timeSinceLastFire > targetData.refractionPeriod) {
|
||||
const signalStrength = edgeData.strength *
|
||||
edgeData.conductionVelocity *
|
||||
sourceNode.data('neuronActivity');
|
||||
|
||||
if (signalStrength > targetData.threshold) {
|
||||
fireNeuron(targetNode, true, currentTime + latency);
|
||||
}
|
||||
}
|
||||
}, latency);
|
||||
});
|
||||
}
|
||||
|
||||
window.neuralInterval = setInterval(simulateNeuralActivity, 100);
|
||||
}
|
||||
|
||||
// Hilfe-Funktion zum Hinzufügen eines Flash-Hinweises
|
||||
|
||||
@@ -1106,4 +1106,64 @@ window.addEventListener('beforeunload', () => {
|
||||
if (window.neuralNetworkBackground) {
|
||||
window.neuralNetworkBackground.destroy();
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
function applyNeuralNetworkStyle(cy) {
|
||||
cy.style()
|
||||
.selector('node')
|
||||
.style({
|
||||
'label': 'data(label)',
|
||||
'text-valign': 'center',
|
||||
'text-halign': 'center',
|
||||
'color': '#ffffff',
|
||||
'text-outline-width': 2,
|
||||
'text-outline-color': 'rgba(0,0,0,0.8)',
|
||||
'text-outline-opacity': 0.9,
|
||||
'font-size': 14,
|
||||
'font-weight': '500',
|
||||
'text-margin-y': 8,
|
||||
'width': function(ele) {
|
||||
return ele.data('neuronSize') ? ele.data('neuronSize') * 8 : 60;
|
||||
},
|
||||
'height': function(ele) {
|
||||
return ele.data('neuronSize') ? ele.data('neuronSize') * 8 : 60;
|
||||
},
|
||||
'background-color': 'data(color)',
|
||||
'background-opacity': 0.9,
|
||||
'border-width': 2,
|
||||
'border-color': '#ffffff',
|
||||
'border-opacity': 0.8,
|
||||
'shape': 'ellipse',
|
||||
'transition-property': 'background-color, background-opacity, border-width',
|
||||
'transition-duration': '0.3s',
|
||||
'transition-timing-function': 'ease-in-out'
|
||||
})
|
||||
.selector('edge')
|
||||
.style({
|
||||
'width': function(ele) {
|
||||
return ele.data('strength') ? ele.data('strength') * 3 : 1;
|
||||
},
|
||||
'curve-style': 'bezier',
|
||||
'line-color': function(ele) {
|
||||
const sourceColor = ele.source().data('color');
|
||||
return sourceColor || '#8a8aaa';
|
||||
},
|
||||
'line-opacity': function(ele) {
|
||||
return ele.data('strength') ? ele.data('strength') * 0.8 : 0.4;
|
||||
},
|
||||
'line-style': function(ele) {
|
||||
const strength = ele.data('strength');
|
||||
if (!strength) return 'solid';
|
||||
if (strength <= 0.4) return 'dotted';
|
||||
if (strength <= 0.6) return 'dashed';
|
||||
return 'solid';
|
||||
},
|
||||
'target-arrow-shape': 'none',
|
||||
'source-endpoint': '0% 50%',
|
||||
'target-endpoint': '100% 50%',
|
||||
'transition-property': 'line-opacity, width',
|
||||
'transition-duration': '0.3s',
|
||||
'transition-timing-function': 'ease-in-out'
|
||||
})
|
||||
.update();
|
||||
}
|
||||
Reference in New Issue
Block a user